CUSTOM BARREL PROFILING

Changing Toasting Profiles to Customize Barrels for Rodney Strong Vineyards' Pinot Noir Program

Rodney Strong Vineyards

OBJECTIVE

The objective is to compare new, custom profiles and commercial profiles and to create a special toasting profile for Rodney Strong Pinot noir wines.

SYNOPSIS

This experiment includes six barrel profiles. One was the competitor's barrel product and another was a World Cooperage special profile created for Rodney Strong Pinot noir. The others were existing World Cooperage barrels, including one special profile that had recently been created for another program.

Rodney Strong winemakers like the attributes of a competitor's barrel in their Pinot noir program. This experiment could have been one of emulating the competitor's barrel; it was not, it went one stage further.

Figure I shows a sensory profile of the competitor's barrel as it presents itself when used for the Rodney Strong Pinot noir and it also shows a slightly different profile. This was the sensory description of the winemaker's preferred barrel. It is slightly different from the competitor's barrel in that it imparts a little more spice, a little more vanillin, less tannin, and a little less toastiness.

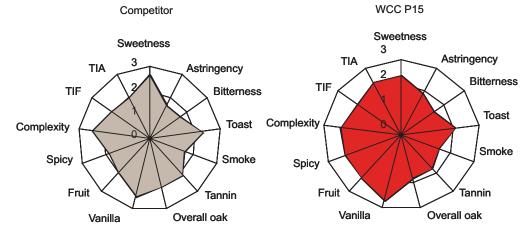


Figure 1. Sensory diagrams of the competitor's barrel and preferred barrel for inclusion in the Rodney Strong Pinot noir program

THE WINE

Producer: Rodney Strong Vineyards

Year: 2003

Variety: Pinot noir

Vineyard: Janes Vineyard

Crush Date: September 17, 2003

Harvest Data

TA: 0.741 g/100 mL tartaric acid

Brix: 26.5

pH: 3.36

Prior to fermenting added: Approximately 30 ppm SO₂ as Potassium

Metabisulfite, 10z/ton Color Pro enzyme

Days of fermentation: 7

Fermented with: RC 212 yeast

During fermentation added: 2 lbs. Superfood, 3 lbs. DAP and 8.345 lbs. tartaric acid/1000 gal

End of fermentation added: n/a

Barrel Preparation: 5-to-10 gal. Cold water to rinse. Stand on each head for 4-5 hours.

Drain and rinse with hot water for I min.

Wine Analysis as of March 31, 2004

Alcohol: 14.26% volume

TA: 0.57 g/100 mL tartaric acid

Volatile Acidity: 0.040 g/100mL acetic acid

Free Sulfur Dioxide: 21 mg/L SO_2

Total Sulfur Dioxide: 43 mg/L SO₂

pH: 3.53

Residual Sugar: 0.03

OAK DATA

Source: French oak

Wood Age: 24 months

Toast Level: Heavy

Bending Technique: Fire

Size: 65 gallons

TRIAL EXECUTION

Sample Size: 4 barrel replicates of each variable

Oak Contact Time: 6 months and 7 days

First Fill: October 20, 2003

Bottling Date: April 27, 2004

THE TRIAL

WCC P3

WCC P15

Competitor's barrel

T.W. Boswell Legacy with Hickory toast

T.W. Boswell Legacy

T.W. Boswell Côte d'Or

RESULTS AND DISCUSSION

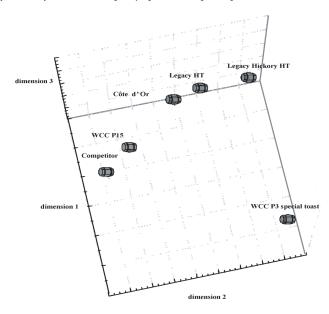

Sensory Analysis

Table I shows the analysis of wines from these barrels. Results are in mgL-I (parts per million) in the wine on an 'as-is' basis.

Compound	Legacy	Legacy	Côte d'Or	WCC P3	WCC P15	Competitor
Tanada lamadad	Hickory HT					
Tannin breakdown	00.04	22.00	20.00	40.74	04.00	04.57
Gallic acid	22.21	22.00	22.20	19.34	21.82	21.57
Ellagic acid		83.47	74.46	67.50	81.03	78.91
Hemicellulose caramelizatio		0.57	0.54	0.05	0.54	0.40
HMF		0.56	0.54	0.85	0.51	0.48
5-Methyl furfural		0.14	0.12	0.10	0.10	0.13
Furfural	1.99	2.31	2.29	1.54	1.66	2.53
Wine phenolics						
Protocatechuic acid	3.34	3.02	3.33	2.64	2.83	2.52
Catechin	247.05	256.79	263.89	208.16	256.76	259.75
Epicatechin	24.35	26.23	26.35	22.05	25.54	26.47
Chlorogenic acid	0.14	0.15	0.25	0.16	0.27	0.27
Caffeic acid	11.04	11.17	11.00	10.12	10.85	11.22
Myricetin	0.88	1.16	1.21	1.19	1.33	1.31
Quercetin	12.21	13.21	12.77	11.18	11.03	9.81
Lignin degradation						
Vanillic acid	0.63	0.62	0.62	0.53	0.62	0.61
Syringic acid	3.26	3.06	3.00	2.00	2.27	2.02
Vanillin	1.57	1.57	1.20	1.13	1.21	1.11
Syringaldehyde	8.02	8.15	8.77	7.35	8.54	8.17
Coniferaldehyde	5.43	5.45	5.18	4.64	4.83	6.00
Sinapaldehyde	0.10	0.06	0.06	0.05	0.01	1E-36
Smoke phenols						
Phenol	1E-36	0.01	0.01	1E-36	0.02	1E-36
Guaiacol	0.05	0.07	1E-36	0.01	0.05	0.04
o-Cresol		1E-36	1E-36	0.03	0.01	1E-36
4-methyl guaiacol		0.19	0.14	0.36	0.39	0.44
4-ethyl phenol		0.01	0.01	0.02	0.21	0.04
4-ethyl guaiacol		0.06	0.09	0.07	0.24	0.03
Oak lactones						
Trans-lactone	0.072	0.149	0.028	0.03	0.01	0.006
Cis-lactone		0.175	0.143	0.053	0.079	0.005

Figure 2 shows a 3-D overview of the data evaluation.

Figure 2. Overview (principal components analysis) of the analysis of the six Pinot noir wines

Inspection of Figure 2 shows that the competitor's barrel and the new special toast barrel (code name WCC P15) are quite separate from the other barrels and close to each other. Figures 3 to 6 illustrate the vanillin, toastiness, spice (4-methyl guaiacol), and ellagic acid levels.

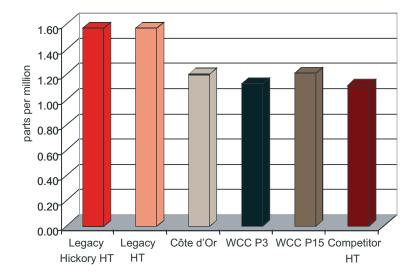


Figure 3. Vanillin in the Pinot noir wines from the various barrels (in parts per million)

Figure 3 shows that the new special toast imparted a little more vanillin to the wine than the competitor's barrel, although both were lower than the Legacy barrels.

In Figure 4 the desired small reduction in toastiness is shown.

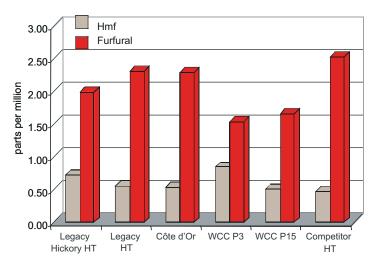


Figure 4. Hmf and furfural in the Pinot noir wines from the various barrels (in parts per million)

The levels of 4-methyl guaiacol (spice) are shown in Figure 5.

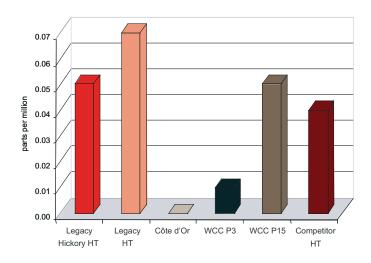



Figure 5. 4-methyl furfural in the Pinot noir wines from the various barrels (in parts per million)

Figure 6 shows a slightly elevated level of ellagic acid, indicating a little more tannin breakdown in the special toast barrel. However, this conclusion requires a similar amount of tannin in the oak used by World Cooperage as in the competitor's stave wood.

Figure 6. Ellagic acid in the Pinot noir wines from the various barrels (in parts per million)

CONCLUSIONS

These results suggest that the 'dream' profile had been realized in this new special toast. Table 2 shows the extent of the difference in the key compounds between the competitor's barrel and special toast WCC P15 barrels.

Table 2: Summary of the differences between WCC P15 and competitor's barrel.								
	WCC P15	Competitor	% Deviation from Competitor					
HMF	0.51	0.48	0.03					
Furfural	1.66	2.53	-0.87					
Ellagic acid	81.03	78.91	2.12					
5-Methyl furfural	0.10	0.13	-0.03					
Vanillin	1.21	1.11	0.10					
Syringaldehyde	8.54	8.17	0.37					
Guaiacol	0.05	0.04	0.01					
4-methyl guaiacol	0.39	0.44	-0.05					
Cis-lactone	0.079	0.005	0.074					

TASTING RESULTS

	Preferences		Total
Ist Choice	%	Count	
Competitor's Barrel	16%	12	77
World Cooperage P3	17%	13	77
World Cooperage P15	21%	16	77
T.W. Boswell Côte d'Or	14%	II	77
T.W. Boswell Legacy	16%	12	77
T.W. Boswell Legacy Hickory	17%	13	77
2nd Choice			
Competitor's Barrel	14%	II	80
World Cooperage P3	19%	15	80
World Cooperage P15	18%	14	80
T.W. Boswell Côte d'Or	19%	15	80
T.W. Boswell Legacy	13%	IO	80
T.W. Boswell Legacy Hickory	19%	15	80
Last Choice			
	a a 0/	-6	0.5
Competitor's Barrel	20%	16	80
World Cooperage P3	16%	13	80
World Cooperage P15	10%	8	80
T.W. Boswell Côte d'Or	19%	15	80
T.W. Boswell Legacy	16%	13	80
T.W. Boswell Legacy Hickory	19%	15	80